Control System HAZOP Methodology

JinHyung Park

Yokogawa Electric Korea TUV Rheinland FS Expert

JinHyung Park

Yokogawa Electric Korea
FS Expert (TUV Rheinland, #158/10, SIS)
Outside Professor of Korea OSHA

Incident Example

Incident by control system failure

1999.6.10 Bellingham, Washington's Whatcom Falls Park Olympic Pipeline Company

3 fatalities, 8 injuries Caused by SCADA system failure and relief valve failure

History of CHAZOP

History of CHAZOP

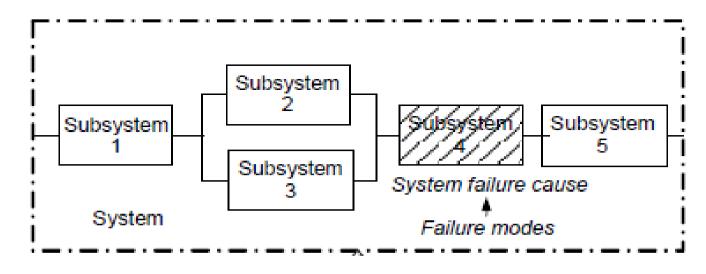
- BAPCO first developed the below Control System HAZOP format in 2005.
- BAPCO applied What-If analysis for Control System HAZOP.

Item #	What If	Hazard	Potential Consequence (s)	Ris Ma	sk atrix		Safeguards	Recommen- dations	Comments	Action By
				S	L	RR				

Difference among HAZOP, FMEA and CHAZOP

The difference between HAZOP and CHAZOP

- HAZOP workshop is executed based on P&ID.
- The main causes of HAZOP report are sensor failure or final element failure of BPCS or field equipment failure.
- The failure of parts of control system in BPCS is missing parts in HAZOP methodology.


Deviation.	Cause.	Consequence.	Cat	L	S.a	L w/ SG.	R w/SG.	Safeguards		Recommendations.	LOPA.	Comment.	
a	a	.a	a	a	a	a	a	Description.	Tag. ₁	Cat.	Description.	a	a
High Pressure.	PCV-002 malfunction closed.	Separator Explosion (2 fatalities, \$65 million damage, local contamination).	S.,	3.	5.1	3.1	15.4	PSV.,	a	a	SIF to shutdown SDV on Emulsion Inlet by PSHH-001.	Yes., SIF#1.,	a
High Level.	LCV-003 malfunction closed.	Plant Explosion by Flare Stack Overflow by Liquid Carryover (15 fatalities, \$235 million damage, local contamination).	S.	3.	5.1	3.1	15.4	а	a	a	SIF to shutdown SDV on Oil Outlet by LSHH.,	Yes., SIF#2.,	a
	PCV-002 malfunction opened.	Plant Explosion by Flare Stack Overflow by Liquid Carryover (15 fatalities, \$235 million damage, local contamination).	S.,	3.	5.1	3.1	15.,	BPCS to control LCV- 003 by LT-003.,	a	BPCS.,	SIF to shutdown SDV on Oil Outlet by LSHH.,	Yes., SIF#3.,	a
Low Level.	LCV-003 malfunction opened.	Oil Vessel Explosion by Gas Blowby (2 fatalities, \$73 million damage, local contamination).	S. ₁	3.	5.1	3.1	15.,	a	a	a	SIF to shutdown SDV on Oil Outlet by LSLL.	Yes., SIF#4.,	a

The difference between FMEA and CHAZOP

- The FMEA workshop is executed based on reliability block diagram.
- Common causes like general security failure, power failure, grounding failure, HVAC failure, time synchronization failure, fire detection failure are not discussed during FMEA.
- Countermeasures to common causes can be analysed during CHAZOP workshop.

YOKOGAWA

The difference between FMEA and CHAZOP

Normal FMEA format

					FAI	LURE MODE EFFEC	T ANALY	/SIS					
Syste	m:			Sul	ıb-sys	stem:							
Failure Analysis						Failure Effec	ct					Page:	
No.	Component	Component Function Failure Failure				Local End			L	С	Detection	Recommendation	Comment
			Mode										

CHAZOP Detailed Methodology

CHAZOP Format and Example about Hardware Failure

	Unit Information	Ð
Unit:₽	DCS ₄	Ð
Process Type:₽	₽	٦
Process Mode:₽	Continuous₽	Ð

	Node Information∉	Design Intention ■
Node:₽	HARDWARE₽	₽
References:⊌	<i>ي</i>	

Deviation	Cause	Consequence	Cat	L	s	L w/ SG	R w/SG	Safeguards			Recommendations	LOPA	Comment	
								Description	Tag	Cat	Description			
Processor	The CPU	All output holding	S	2	5	1	5	System Alarm		ALM		No		
Module	failure. (MTBF = 15	potentially leading to fire and explosion.	potentially leading to fire and explosion.					5	Redundant CPU modules		BU		No	
	years)						5	SIF (Safety Instrumented Function)		SIF		No		
IO Modules	The redundant I/O modules	All output holding potentially leading to fire and explosion.	S	2	5	1	5	CONTROL IO MODULE REDUNDANT.		BPCS		No		
	failure.						5	SIF (Safety Instrumented Function)		SIF		No		
							5	System Alarm		ALM		No		
	The single	No impact for contol	В	2	1	1	1	Fault alarm on DCS		ALM		No		
	the I/O module	and interlock					1	Redundant IO modules		BU		No		
	failure.						1	SIF (Safety Instrumented Function)		SIF		No		
		No indication in case of monitoring	В		1	2	2	Fault alarm on DCS		ALM		No		

CHAZOP Methodology

Team effort:

- Facilitator (Chairman/ Scriber)
- Process Eng. (End User)
- Instrument Eng. (End User)
- System Eng. (Vendor)
- Safety Eng (part time, End User)
- Cyber Security Eng. (part time, Vendor)

Form: team brainstorm sessions

Basis: system configuration diagram

Use of component list (deviation cell)

Results:

Overview of all possible unwanted disturbances

Determine what safeguards are already in place

Recommendation for improvements of the process or required clarifications

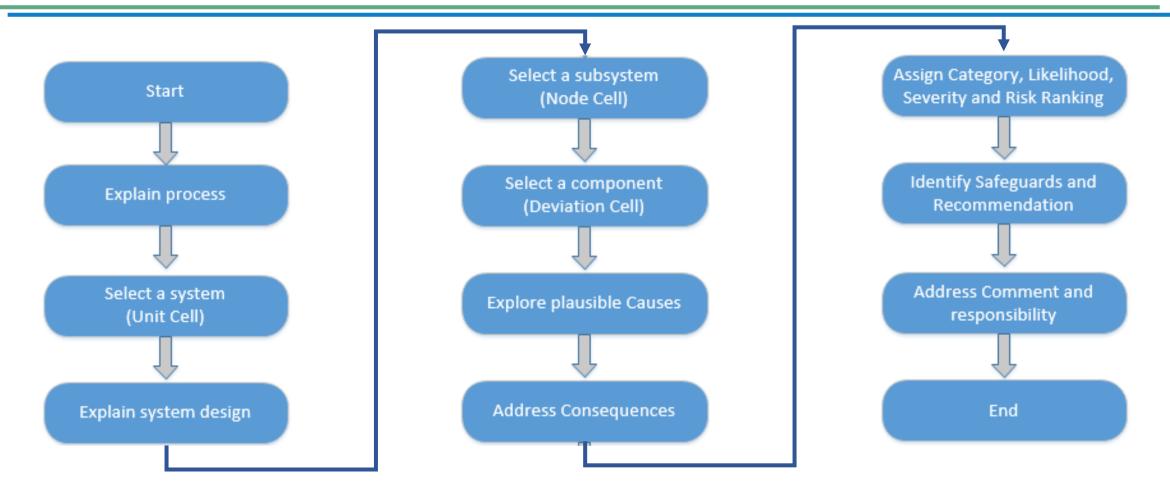
Role and Responsibilities of CHAZOP Team Members

- Chairman: shall be independent from design engineering team and operation team and is responsible for concept and scope and shall propose methodology and is also responsible for the selection of parameter and review of CHAZOP report.
- Scriber: shall be the experienced system engineer and is responsible for CHAZOP report documentation.
- Coordinator: is responsible for the communication between CHAZOP team and system vendor and chairman and planning and scheduling CHAZOP.
- Process engineer: shall explain overall process and should actively join the discussion about consequence, safeguard and recommendation and the revamping period and cost after asset failure.
- Security Engineer: Check and consult if there is any missing equipment in relation with security
- Instrument engineer (End User): shall propose the replacement cycle of computer and the revamping period and cost after asset failure.

Input Documents and Questions of CHAZOP

Critical Documents:

- HAZOP Report
- PFD
- System Configuration
- Controller architecture
- Typical loop configuration


Items to be questioned:

- System alarm philosophy
- Control philosophy
- Fail safe concept
- Maintenance philosophy
- Provision for fault detection and switchover
- Environment protection
- Security and access control

CHAZOP Procedure

How to Determine Likelihood and Severity

LIKELIHOOD

 LOPA initiation likelihood criteria table shall be referred to, to determine the likelihood of HAZOP. It is recommended that CHAZOP risk ranking matrix shall be made based on HAZOP risk criteria.

SEVERITY

Severity shall be determined not considering the safeguard activation.
 Suppose that there is no safeguard and then determine the severity of consequence. It is recommended that CHAZOP risk ranking matrix shall be made based on HAZOP risk criteria.

Risk Ranking

Consequence		Severity											
Likelihood	1	2	3	4	5								
1	1 •	2 ▼	3 ▼	4 ▼	5 ▼								
2	2 ▼	4 ▼	6 ▼	8 🔻	10 🔻								
3	3 ▼	6 ▼	9 •	12 🔻	15 ▼								
4	4 ▼	8 🔻	12 🔻	16 ▼	20 🔻								
5	5 ▼	10 ▼	15 ▼	20 🔻	25 ▼								

Risk Ranking (S: Severity)

		Severity De	finitions	
#	Business	Environment	Reputation	Safety
1	<\$50,000	Temporary release and cleanup within days	Immediate community not affected	Minor injury (First aid)
2	\$500,000	Temporary release and cleanup within weeks	Immediate community affected	Minor injury or minor health impacts (Lost time recordable, Medical treatment case)
3	\$5 million	Temporary damage to the facility and cleanup within months	Affects more than one communities/ state	Injury or moderate health impacts (Permanent injury)
4	\$20 million	Permanent damage to facility	Affects national communities	Single fatality
5	>\$50 million	Permanent damage to facility and offsite environment	Affects regional/ international community	Multiple fatalities

Risk Ranking (L: Likelihood)

#	Likelihood Definitions
1	Once 100,000 years
2	Once 10,000 years
3	Once 1,000 years
4	Once 100 years
5	Once 10 years

Cause and Consequence

- The cause of control system HAZOP shall be any unit which can be replaced during maintenance.
- Even though the purpose of control system HAZOP is to study the effect after the failure of components of control system, the components to be analyzed cannot be the detailed components inside each module like diode, microprocessor and transistor, etc.

Double Jeopardy:

- Double Jeopardy rule shall be applied during Control System HAZOP workshop.
- Only one failure or cause shall be written on cause cell.
- Double jeopardy doesn't mean that cause and safeguards cannot fail at the same time.
- Consequence shall be written under the condition that the cause and all of safeguards fail at the same time. If somebody assume that safeguards and cause does not fail at the same time, double jeopardy rule cannot be applied and a lot of scenarios shall be analyzed accordingly.

Overall System Scope (Unit)

- Distributed Control System
- General Security
- PIMS
- OPC
- Printer
- Safety Instrumented System
- FGS
- Turbine Control System
- Vibration Monitor / Machine Monitoring System
- Motor Control System
- Local Control Panel
- Analyser

Overall Subsystem Scope (Node)

- Hardware
- Software
- Cabinet components
- Individual security
- Common mode failure
- Data interfacing between other systems
- Other failures

YOKOGAWA

Overall Items of General Security (Deviation)

- Physical access restriction
- Logical access restriction
- Restricting unauthorized modification of data
- Incident detection and response plan

System Hardware Scope (Deviation)

- Processor modules
- I/O module
- Hard disks
- Chassis / node communication modules
- Chassis / node power supplies
- Network device failures (L2 Switches, FO converters)

- Network cables and bus
- IO BUS (among chassis / node)
- Grounding
- Filters
- Fan
- EWS / OWS monitors
- EWS / OWS workstations

System Software Scope (Deviation)

- Operating software
- Application software
- Database configuration

Cabinet (Deviation)

(Marshalling / Relay / Auxiliary Console)

- Cabinet Power Supplies
- Barrier / Isolator
- Relay
- System Cable
- Annunciator
- Push Button
- Grounding
- Filters
- Fan

Individual Security (Deviation)

- Physical access restriction
- Individual ICS components prevention
- Restricting unauthorized modification of data

Common Mode Failures Scope (Deviation)

- Power failure and grounding
- Routing of communication cables
- HVAC
- Dust
- Fire detection and protection

Data Interfacing between Other System (Deviation)

- Communication devices (communication modules, L2 switch, FO converter)
- Cables
- Interface programs (Modbus address mapping, OPC)

Other Failures (Deviation)

- System loading / Scan time
- Network loading
- Field device
- Time synchronization
- EMI / Lightening protection

Safeguards and Recommendations

- Failure detection
- Redundancy
- Separation
- SIF
- PSV
- Other system
- Diode
- Fuse

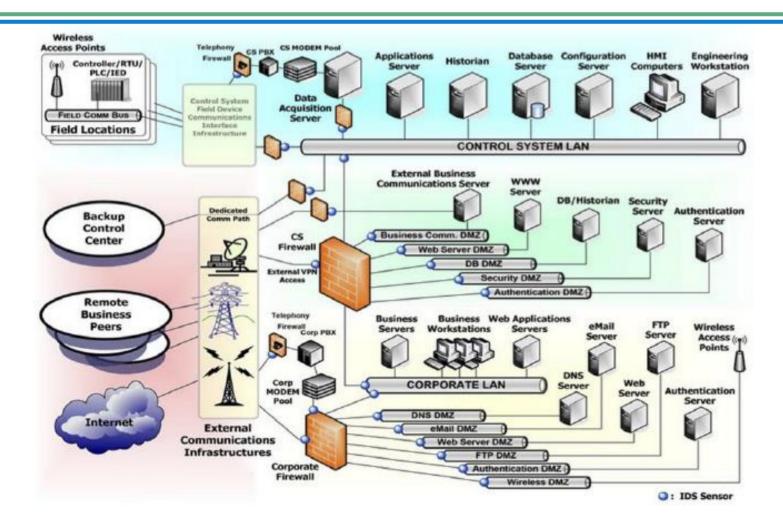
- Armored cable
- Filter
- Overhaul cleaning service by annual maintenance service
- Fire and gas system
- Quality management by ISO9000
- GPS time synchronization

Safeguards and Recommendations (General Security)

- Physical access restriction
 - Guards
 - Cabinet / Room Door Key
- Logical access restriction
 - DMZ network architecture with firewall
 - Unidirectional gateway (e.g. data diode)
 - Central authentication system (e.g. Microsoft Active Directory, LDAP, Kerberos, RADIUS, TACACS+)
 - MAC (Message Authentication Code)
- Incident detection and response plan
 - Incident detection
 - Incident response plan
 - System recovery plan

Safeguards and Recommendations (Individual Security)

- Physical access restriction
 - Lock
 - Card reader for personal identity verification (authentication)
 - USB lock & key
- Individual ICS components prevention
 - Disabling all unused ports
 - Antivirus software
 - ICS user privilege (authorization)
 - File integrity checking software for malware detection
 - Security audit
 - Intrusion detection software
 - Critical component redundant
- Restricting unauthorized modification of data
 - Central authentication system (e.g. Microsoft Active Directory, LDAP, Kerberos, RADIUS, TACACS+)
 - MAC (Message Authentication Code)


Example of CHAZOP about Security (Physical Access)

Deviation	Cause	Consequence	Cat	L	s	L w/ \$G	R w/SG	Safeguar	rds		Recommendations	LOPA	Comment
								Description	Tag	Cat	Description		
Restricting Physical	The malicious	System failure or control error	S	2	5	1	5	Engineering key on Operation keyboard		ОТН		No	
Access	modification by physical	potentially leading to fire and explosion.					5	Console door key lock		OTH		No	
	access restriction						5	Control room door key lock		OTH		No	
	failure						5	Security guard to stop onboarding of unauthorized person		ADM		No	
	Controller		S	2	5	1	5	Cabinet door lock key		OTH		No	
	processor stop by	control error potentially leading to fire and explosion.			No								
	unplugging CPU card forcibly by physical access restriction failure	ille and explosion.					5	Security guard to stop onboarding of unauthorized person		ADM		No	
	The virus infection by	System failure or control error	S	2	5	1	5	Engineering key on Operation keyboard		ОТН		No	
	physical	potentially leading to					5	USB lock & key		ADM		No	
	access restriction	fire and explosion.					5	Console door key lock		OTH		No	
	failure						5	Control room door key lock		OTH		No	
							5	Security guard to stop onboarding of unauthorized person		ADM		No	

CSSP Recommended Defense-In-Depth Architecture

Example of CHAZOP about Security (Logical Access)

Deviation	Cause	Consequence	Cat	L	s	L w/ SG	R w/SG	Safeguards		Recommendations	LOPA	Comment														
								Description	Tag	Cat	Description															
Restricting logical access	Malicious modification by logical access restriction failure	System failure or control error potentially leading to fire and explosion.	S	2	5	1	5	Account policy (Password, Security level)		ADM		No														
	Hacker attack through network by	System failure or control error potentially leading to fire and explosion.	S	2	5	1	5	MAC(Message Authentication Code) protection in DCS Vnet/IP		ОТН		No														
	logical access restriction																			5	Firewalls for the OPC network connection		ОТН		No	
	failure						5	Countermeasures (traffic check & delete) against DOS in DCS VnetIP		ОТН		No														
Incident	Incident	System failure and	В	2	5	1	5	Incident response plan		ADM		No														
Detection and Response Plan	occurence in relation with security	maintenance team can not act properly and lead to long recovery time .					5	System recovery plan(Including backup&recovery procedure)		ADM		No														
							5	Internal security training		ADM		No														

Conclusion

Conclusion

- There are several merits of CHAZOP compared with FMEA and HAZOP.
- The more items including general security failure, power failure, grounding failure, HVAC failure, time synchronization failure, fire detection failure can be discussed and reported during CHAZOP compared with FMEA.
- In this paper, the CHAZOP report has same format as normal HAZOP, so the title of each row can be confused. The CHAZOP guideline shall clearly describe the detailed methodology to prevent this kind of confusion.

Thank you for your listening.

JinHyung Park

Yokogawa Electric Korea

e-mail: jinhyung.park@kr.yokogawa.com

